domingo, 22 de febrero de 2015

Ecuación de Schrödinger

En 1926, el físico austríaco Erwin Schrödinger derivó una ecuación de ondas desde el principio variacional de Hamilton inspirándose en la analogía existente entre la Mecánica y la Óptica. Esta ecuación, cuya formulación se puede ver en el artículo An Undulatory Theory of the Mechanics of Atoms and Molecules de la revista Physical Review, explicaba mucha de la fenomenología cuántica que se conocía en aquel momento.

Aunque estaba claro que esta ecuación describía la evolución
Erwin Schrodinger
temporal del estado cuántico de un sistema físico no relativista, fue pocos días después de su publicación cuando el físico alemán Max Born desarrolló la interpretación probabilista del objeto principal de la ecuación, la función de onda, que sigue vigente hoy en día ya que entró a formar parte de la llamada interpretación de Copenhague de la Mecánica Cuántica, con la que Schrodinger nunca estuvo del todo de acuerdo. Sus ambiciones al abordar la tarea eran encontrar, en analogía con la Óptica, el límite en el cual se pudieran describir de forma determinista las trayectorias de las partículas. Llegó a proponer una interpretación de la función de onda como densidad de carga que no fructificó. En este sentido Schrödinger fue, al igual que Einstein, profeta y hereje de la teoría cuántica.


El desarrollo que haremos aquí no es el histórico. Partiremos de principios de simetría apoyados en el teorema de Wigner, físico húngaro artífice entre otros de la llamada interpretación ortodoxa de la Mecánica Cuántica, para llegar a una formulación general que devenirá la original de Schrödinger cuando nos ocupemos de la representación en el llamado espacio de posiciones.

domingo, 15 de febrero de 2015

"La física cuántica demuestra que hay vida después de la muerte"

Hay vida después de la muerte, y la muerte es una ilusión creada por nuestra conciencia. Un científico estadounidense ha encontrado pruebas de esta teoría en la física cuántica.
"Creemos que la vida es solo la actividad del carbono y una mezcla de moléculas; vivimos un tiempo y después nos pudrimos bajo tierra", escribió el doctor en medicina Robert Lanza, citado por el diario británico 'Daily Mail'.

Robert Lanza
Este profesor de la Escuela de Medicina de la Universidad Wake Forest de Carolina del Norte argumentó que los humanos creemos en la muerte porque "nos han enseñado a creer que morimos"; es decir, nuestra conciencia asocia la vida con el cuerpo, y sabemos que el cuerpo muere. 


Su teoría, denominada 'biocentrismo' o 'universo de la biocéntrica', explica que la muerte no puede ser tan terminal como creemos. Según esta teoría, la biología y la vida originan la realidad y el universo, y no a la inversa.

De eso se desprende que la conciencia determina la forma y el tamaño de los objetos del universo.

Para dar un ejemplo, Lanza se centra en cómo percibimos el mundo que nos rodea. Una persona ve el cielo azul y le dicen que ese color es el 'azul', "pero se pueden cambiar las células de su cerebro para que vea el cielo de color verde o rojo".

Nuestra conciencia da sentido al mundo y puede ser alterada para cambiar nuestra interpretación. Desde el punto de vista de la biocéntrica, el espacio y el tiempo no se comportan de manera tan rígida ni tan rápida como nos presenta nuestra conciencia.

Si aceptamos la teoría de que el espacio y el tiempo simplemente son 'herramientas de nuestra mente', entonces la muerte y la idea de la inmortalidad existen en un mundo sin límites espaciales ni lineales. 

Los físicos teóricos creen que hay una cantidad infinita de universos en los que diversas variaciones de personas y situaciones existen y ocurren simultáneamente.

Lanza afirma que todo lo que puede suceder sucede en algún momento en todos estos 'multiversos' (los múltiples universos posibles), lo que significa que la muerte no puede existir "en un sentido real".

Según Lanza, que participó en los primeros experimentos de clonación, cuando morimos nuestra vida se convierte en una "flor perenne que vuelve a florecer en el multiverso".

Para corroborar su teoría, el científico citó un experimento conocido como 'experimento de la doble rendija', que demuestra que la percepción humana participa en el comportamiento de la materia y la energía.   

Fuente del artículo: http://actualidad.rt.com/

domingo, 8 de febrero de 2015

El modelo atómico de Bohr

Las primeras aportaciones relevantes de Bohr a la Física contemporánea tuvieron lugar en 1913, cuando, para afrontar los problemas con que había topado su maestro y amigo Rutherford, afirmó que los movimientos internos que tienen lugar en el átomo están regidos por leyes particulares, ajenas a las de la física tradicional. Al hilo de  esta afirmación, Bohr observó también que los electrones, cuando se hallan en ciertos estados estacionarios, dejan de irradiar energía.

Niels Bohr
En realidad, Rutherford había vislumbrado un átomo de hidrógeno conformado por un protón (es decir, una carga positiva central) y un partícula negativa que giraría alrededor de dicho protón de un modo semejante al desplazamiento descrito por los planetas en sus órbitas en torno al sol. Pero esta teoría contravenía las leyes de la física tradicional, puesto que, a tenor de lo conocido hasta entonces, una carga eléctrica en movimiento tenía que irradiar energía, y, por lo tanto, el átomo no podría ser estable. 

Niels Bohr aceptó, en parte, la teoría atómica de Rutherford, pero la superó combinándolo con las teorías cuánticas de Max Planck (1858-1947). En los tres artículos que publicó en el Philosophical Magazine en 1913, Bohr enunció cuatro postulados: 1) Un átomo posee un determinado número de órbitas estacionarias, en las cuales los electrones no radian ni absorben energía, aunque estén en movimiento. 2) El electrón gira alrededor de su núcleo de tal forma que la fuerza centrífuga sirve para equilibrar con exactitud la atracción electrostática de las cargas opuestas. 3) El momento angular del electrón en un estado estacionario es un múltiplo de h / 2p (donde h es la constante cuántica universal de Planck).

Según el cuarto postulado, cuando un electrón pasa de un estado estacionario de más energía a otro de menos (y, por ende, más cercano al núcleo), la variación de energía se emite en forma de un cuanto de radiación electromagnética (es decir, un fotón). Y, a la inversa, un electrón sólo interacciona con un fotón cuya energía le permita pasar de un estado estacionario a otro de mayor energía.

Dicho de otro modo, la radiación o absorción de energía sólo tiene lugar cuando un electrón pasa de una órbita de mayor (o menor) energía a otra de menor (o mayor), que se encuentra más cercana (o alejada) respecto al núcleo. La frecuencia f de la radiación emitida o absorbida viene determinada por la relación: E1 - E2 = hf, donde E1 y E2 son las energías correspondientes a las órbitas de tránsito del electrón. Merced a este último y más complejo postulado, Bohr pudo explicar por qué, por ejemplo, los átomos de hidrógeno ceden distintivas longitudes de onda de luz, que aparecen en el espectro del hidrógeno como una distribución fija de líneas de luz conocida como serie de Balmer.

En un principio, el modelo atómico propuesto por Bohr desconcertó a la mayor parte de los científicos de todo el mundo. Su manera de explicar la estructura de un átomo era hacer caso omiso (al menos en ciertas partes pequeñas del átomo) de un principio aceptado de la física. La teoría atómica de Bohr parecía casi un timo: inventar un modelo simplemente por el hecho de que podría funcionar bien. Pero, a raíz de que su colega y maestro Rutherford le felicitara efusivamente por estos postulados, numerosos investigadores del Centro y el Norte de Europa comenzaron a interesarse por las ideas del físico danés, y algunos de ellos, como los alemanes James Franck (1882-1964) y Gustav Hertz (1887-1975), proporcionaron nuevos datos que confirmaban la validez del modelo de Bohr.


La teoría atómica de Bohr se aplicó, en efecto, al estudio del átomo de hidrógeno, aunque enseguida pudo generalizarse a otros elementos superiores, gracias a la amplitud y el desarrollo que le proporcionó el trabajo de Arnold Sommerfeld (1868-1951), que mejoró el modelo del danés para explicar la estructura fina del espectro. De ahí que los postulados lanzados por Niels Bohr en 1913 puedan considerarse como las bases en que se sustenta la física nuclear contemporánea.

Texto extraído de: http://www.biografiasyvidas.com/

domingo, 1 de febrero de 2015

Origen de la física cuántica

La mecánica cuántica es, cronológicamente, la última de las grandes ramas de la física. Comienza a principios del siglo XX, en el momento en que dos de las teorías que intentaban explicar ciertos fenómenos, la ley de gravitación universal y la teoría electromagnética clásica, se volvían insuficientes para esclarecerlos. La teoría electromagnética generaba un problema cuando intentaba explicar la emisión de radiación de cualquier objeto en equilibrio, llamada radiación térmica, que es la que proviene de la vibración microscópica de las partículas que lo componen. Usando las ecuaciones de la electrodinámica clásica, la energía que emitía esta radiación térmica tendía al infinito si se suman todas las frecuencias que emitía el objeto, con ilógico resultado para los físicos.

Albert Einstein
Es en el seno de la mecánica estadística donde surgen las ideas cuánticas en 1900. Al físico alemán Max Planck se le ocurrió un artificio matemático: si en el proceso aritmético se sustituía la integral de esas frecuencias por una suma no continua, se dejaba de obtener infinito como resultado, con lo que se eliminaba el problema; además, el resultado obtenido concordaba con lo que después era medido.

Fue Max Planck quien entonces enunció la hipótesis de que la radiación electromagnética es absorbida y emitida por la materia en forma de «cuantos» de luz o fotones de energía mediante una constante estadística, que se denominó constante de Planck. Su historia es inherente al siglo XX, ya que la primera formulación cuántica de un fenómeno fue dada a conocer por el mismo Planck el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín.

La idea de Planck habría quedado muchos años sólo como hipótesis si Albert Einstein no la hubiera
retomado, proponiendo que la luz, en ciertas circunstancias, se comporta como partículas de energía independientes (los cuantos de luz o fotones). Fue Albert Einstein quien completó en 1905 las correspondientes leyes de movimiento en su teoría especial de la relatividad, demostrando que el electromagnetismo era una teoría esencialmente no mecánica. Culminaba así lo que se ha dado en llamar física clásica, es decir, la física no-cuántica.

Usó este punto de vista llamado por él «heurístico», para desarrollar su teoría del efecto fotoeléctrico, publicando esta hipótesis en 1905, lo que le valió el Premio Nobel de Física de 1921. Esta hipótesis fue aplicada también para proponer una teoría sobre el calor específico, es decir, la que resuelve cuál es la cantidad de calor necesaria para aumentar en una unidad la temperatura de la unidad de masa de un cuerpo.

El siguiente paso importante se dio hacia 1925, cuando Louis De Broglie propuso que cada partícula material tiene una longitud de onda asociada, inversamente proporcional a su masa, y dada por su velocidad. Poco tiempo después Erwin Schrödinger formuló una ecuación de movimiento para las «ondas de materia», cuya existencia había propuesto De Broglie y varios experimentos sugerían que eran reales.

La mecánica cuántica introduce una serie de hechos contraintuitivos que no aparecían en los paradigmas físicos anteriores; con ella se descubre que el mundo atómico no se comporta como esperaríamos. Los conceptos de incertidumbre o cuantización son introducidos por primera vez aquí. Además la mecánica cuántica es la teoría científica que ha proporcionado las predicciones experimentales más exactas hasta el momento, a pesar de estar sujeta a las probabilidades.

Texto extraído de: http://es.wikipedia.org/